I) Généralités sur les nombres complexes

DÉFINITION

Ensemble des nombres complexes

- On définit le nombre imaginaire noté i comme un nombre vérifiant $i^2 = -1$ Attention! Ce nombre i est parfois noté j en électricité...
- Un nombre complexe est alors un nombre de la forme z = x + iy où $(x, y) \in \mathbb{R}^2$

On note $\mathbb C$ l'ensemble des nombres complexes : $\mathbb C = \left\{z = x + iy \mid (x,y) \in \mathbb R^2\right\}$

On munit \mathbb{C} de deux lois + et \times définies par :

$$\forall (a, b, c, d) \in \mathbb{R}^4, \quad (a + ib) + (c + id) = (a + c) + i(b + d)$$
 et $(a + ib) \times (c + id) = (ac - bd) + i(ad + bc)$

DÉFINITION

Le vocabulaire des nombres complexes

- \bullet Si z est un nombre complexe,
 - l'écriture z=x+iy où $(x,y)\in\mathbb{R}^2$ est la forme algébrique du nombre complexe z
 - le réel x est la partie réelle du nombre complexe z notée Re(z) = x
 - le réel y est la partie imaginaire du complexe z notée Im(z) = y

z est un nombre réel $\Leftrightarrow \operatorname{Im}(z) = 0$ z est un nombre imaginaire pur $\Leftrightarrow \operatorname{Re}(z) = 0$

- Le corps $\mathbb C$ peut être identifié à un plan rapporté à un repère orthonormal $(O;\overrightarrow{u},\overrightarrow{v})$ appelé plan complexe.
 - l'axe $(O; \overrightarrow{u})$ est l'axe des réels;
 - l'axe $(O; \overrightarrow{v})$ est l'axe des imaginaires purs;

A chaque nombre complexe z=x+iy, on associe un unique point M de coordonnées (x;y) dans $(O;\overrightarrow{u},\overrightarrow{v})$ M est l'image du complexe z et, réciproquement, z est l'affixe du point M et on note M(z) On dit aussi que z est l'affixe du vecteur \overrightarrow{OM} et on note $\overrightarrow{OM}(z)$

- Le nombre complexe conjugué du complexe z = x + iy est le nombre $\overline{z} = x iy$ Les images M(z) et $\overline{M}(\overline{z})$ des complexes z et \overline{z} dans le plan complexe sont symétriques par rapport à l'axe réel.
- On définit le module du nombre complexe z=x+iy par le réel positif $|z|=\sqrt{z\overline{z}}=\sqrt{x^2+y^2}$ Dans le plan complexe, si M est le point d'affixe z, alors |z|=OM
- Lorsque z est un complexe non nul, et si M est le point d'affixe z dans le plan complexe on appelle argument de z, noté arg z, une mesure en radian (modulo 2π) de l'angle $(\overrightarrow{u};\overrightarrow{OM})$
- Tout nombre complexe non nul z est repéré de manière unique par son module et un argument θ par $z = |z|(\cos \theta + i \sin \theta)$: cette écriture est la forme trigonométrique du complexe z.

Proposition

Propriétés liées à la conjugaison

•
$$\forall z \in \mathbb{C}$$
, $\operatorname{Re}(z) = \frac{z + \overline{z}}{2}$ $\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$ et $|z|^2 = z\overline{z}$

$$\bullet \ \forall (z,z') \in \mathbb{C}^2, \qquad \overline{z+z'} = \overline{z} + \overline{z'} \qquad \qquad \overline{z.z'} = \overline{z}.\overline{z'} \qquad \text{et} \qquad \overline{\overline{z}} = z$$

• $\forall z \in \mathbb{C}$, z est un nombre $r\acute{e}el \Leftrightarrow z = \overline{z}$ et z est un nombre $imaginaire pur \Leftrightarrow z = -\overline{z}$

Proposition

Propriétés du module

•
$$\forall (z, z') \in \mathbb{C}^2$$
, $|zz'| = |z||z'|$ et, si $z' \neq 0$, $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

•
$$\forall z \in \mathbb{C}$$
, $\operatorname{Re}(z) \le |\operatorname{Re}(z)| \le |z|$ et $\operatorname{Im}(z) \le |\operatorname{Im}(z)| \le |z|$

(Inégalités triangulaires)

•
$$\forall (z,z') \in \mathbb{C}^2$$
, $|z+z'| \le |z| + |z'|$ et $\forall (z,z') \in \mathbb{C}^2$, $||z| - |z'|| \le |z-z'|$ avec égalité si $z' = 0$ ou $z = 0$ ou $z = \lambda z', \lambda > 0$

$$\forall (z, z') \in \mathbb{C}^2, \qquad ||z| - |z'|| \le |z - z'|$$

II) Nombres complexes de module 1, exponentielle complexe

II.1) Définition et description de l'ensemble \mathbb{U} des complexes de module 1

Définition et Proposition

Ensemble des complexes de module 1

ullet On note ${\mathbb U}$ l'ensemble des nombres complexes de module 1 : $\mathbb{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$

$$\forall (z,z') \in \mathbb{U}^2, \quad z.z' \in \mathbb{U} \qquad \text{et} \qquad \overline{z} = \frac{1}{z} \in \mathbb{U} \; (\text{ en particulier } z \neq 0)$$

DÉFINITION et Proposition

Représentation exponentielle des complexes de module 1 Représentation exponentielle des nombres complexes

 $e^{i\theta} = \cos\theta + i\sin\theta.$ Pour tout réel θ , on pose

• $\mathbb{U} = \left\{ e^{i\theta} \mid \theta \in \mathbb{R} \right\}$ Dans le plan complexe, \mathbb{U} s'identifie au cercle trigonométrique de centre O de rayon 1

On admet le lemme suivant pour l'instant : Si a et b sont des réels avec $a^2 + b^2 = 1$ alors il existe $\theta \in \mathbb{R}$ avec $a = \cos \theta$ et $b = \sin \theta$

• Si $z \in \mathbb{C}^*$, $z = |z|e^{i\theta}$ où θ est une valeur de l'argument de z

Cette écriture est appelée forme exponentielle du nombre complexe z

Proposition

Propriétés de $\theta \mapsto e^{i\theta}$

(Formules d'Euler)
$$\bullet \forall \theta \in \mathbb{R}, \quad \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \quad \text{et} \quad \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$
$$\bullet \forall (\theta, \theta') \in \mathbb{R}^2, e^{i(\theta + \theta')} = e^{i\theta}e^{i\theta'} \quad \left(\text{et on a aussi } e^{i(\theta - \theta')} = \frac{e^{i\theta}}{e^{i\theta'}} \right)$$

$$\bullet \ \forall (\theta, \theta') \in \mathbb{R}^2, \quad e^{i\theta} = e^{i\theta'} \Leftrightarrow \theta \equiv \theta'[2\pi]$$

•
$$\forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R}, \qquad e^{in\theta} = (e^{i\theta})^n$$

(Formule de Moivre) $\bullet \forall n \in \mathbb{Z}, \forall \theta \in \mathbb{R}, \quad (\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$

PROPOSITION

Propriétés des arguments

$$\forall (z, z') \in \mathbb{C}^* \times \mathbb{C}^*, \forall n \in \mathbb{Z}, \\ \arg(zz') \equiv \arg(z) + \arg(z') \ [2\pi] \qquad \arg\left(\frac{z}{z'}\right) \equiv \arg(z) - \arg(z') \ [2\pi] \qquad \text{et} \qquad \arg(z^n) \equiv n \arg(z) \ [2\pi]$$

Point méthode Application de l'exponentielle complexe à la trigonométrie

• Linéariser une expression trigonométrique c'est transformer une expression de la forme $\cos^n x \sin^m x$ où $(m,n) \in \mathbb{N}^2$ en une expression de la forme $\cos(px)$ ou $\sin(qx)$ avec $(p,q) \in \mathbb{N}^2$ Cette manipulation est surtout utilisée pour trouver des primitives.

OUTILS : Formules d'Euler, Formules de trigonométrie,

Formule du binôme de Newton : $\forall (a,b) \in \mathbb{C}^2, \forall n \in \mathbb{N}, \quad (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$

• Calcul de sommes contenant des fonctions trigonométriques On peut essayer d'exprimer la somme comme partie réelle (ou imaginaire)

d'une autre somme avec des exponentielles complexes.

OUTILS: Formule de Moivre, Formule du binôme de Newton,

Suite géométrique :
$$\forall n \in \mathbb{N}, \forall z \in \mathbb{C}, z \neq 1, \quad \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$$

II-3) Construction d'une fonction exponentielle complexe

Définition et Propositions Fonction exponentielle complexe

- On définit l'exponentielle du complexe z=x+iy où $(x,y)\in\mathbb{R}^2$ par $e^z=e^xe^{iy}$
- $\bullet \ \forall (z, z') \in \mathbb{C}, \quad e^{z+z'} = e^z e^{z'}$
- $\forall z \in \mathbb{C}, \quad |e^z| = e^{\operatorname{Re}(z)}$ et $\operatorname{Im}(z)$ est une valeur de $\operatorname{arg}(e^z)$

Fonctions complexes et fonctions exponentielles complexes

DÉFINITION Si f est une fonction définie sur un intervalle I de \mathbb{R} à valeurs dans \mathbb{C} , on dira que la fonction f est dérivable sur I lorsque les deux fonctions réelles $\operatorname{Re} f: x \mapsto \operatorname{Re}(f(x))$ et $\operatorname{Im} f: x \mapsto \operatorname{Im}(f(x))$ sont dérivables sur I.

Dans ce cas, la dérivée de la fonction f est la fonction complexe f' = (Ref)' + i(Imf)'

PROPOSITION Si φ est une fonction dérivable d'un intervalle I de \mathbb{R} dans \mathbb{C} , alors

$$\left[\begin{array}{ccc} e^{\varphi}: & I & \to & \mathbb{C} \\ & t & \mapsto & e^{\varphi(t)} \end{array}\right] \text{ est aussi dérivable sur } I \text{ et on a } (e^{\varphi})' = \varphi' e^{\varphi}$$

Equations différentielles linéaires complexes du premier ordre

PROPOSITION Les solutions sur l'intervalle I de $\mathbb R$ de l'équation différentielle $y' + \alpha(t)y = 0$ où α est une fonction à valeurs complexes de la variable réelle t qui sont continues sur I sont les fonctions de I dans $\mathbb C$ données par $\left[t\mapsto \gamma e^{-\Delta(t)}\right]$ où $\Delta: I\mapsto \mathbb C$ est une primitive de α sur I et où $\gamma\in \mathbb C$ est une constante d'intégration

où $\Delta: I \mapsto \mathbb{C}$ est une primitive de α sur I et où $\gamma \in \mathbb{C}$ est une constante d'intégration On peut alors facilement adapter la théorie générale du cas réelle aux cas complexes pour résoudre des équations du type $\lambda(t)y' + \mu(t)y = \nu(t)$ où $\lambda, \mu, \nu: I \to \mathbb{C}$ sont continues sur I. III-1) Équations $z^2 = a$ pour $a \in \mathbb{C}$ fixé, racines carrées d'un nombre complexe

Définition

Racines carrées d'un nombre complexe

et Proposition

On appelle racine carrée d'un nombre complexe a tout nombre complexe tel que $z^2 = a$ Tout nombre complexe a possède exactement deux racines carrées qui sont opposées.

Point méthode Rechercher les racines carrées d'un nombre complexe a non réel

- Méthode trigonométrique : On écrit a sous forme exponentielle $a = \rho e^{i\theta}$ avec $\rho > 0$ puis on cherche les solutions sous la forme $z = re^{i\varphi}$ avec r > 0
- Méthode algébrique : On cherche les solutions sous forme algébrique z = x + iy où $(x, y) \in \mathbb{R}^2$ $z^2 = a \Rightarrow |z|^2 = |a| \qquad \text{d'où on obtient une \'equation} \qquad x^2 + y^2 = |a| \qquad (1)$ $z^2 = (x+iy)^2 = a \Leftrightarrow x^2 + y^2 + 2ixy = \text{Re}(a) + i\text{Im}(a) \Leftrightarrow \begin{cases} x^2 - y^2 = \text{Re}(a) & (2) \\ 2xy = \text{Im}(a) & (3) \end{cases}$ Les \'equations (1) et (2) permettent de déterminer x^2 et y^2 donc x et y sont connus au signe près

L'équation (3) permet de savoir si x et y ont le même signe ou un signe contraire.

III-2) Résolution des équations du second degré dans C

PROPOSITION Résolution des équations du second degré à coefficients complexes

Pour résoudre l'équation (E): $az^2 + bz + c = 0$ où $(a, b, c) \in \mathbb{C}^3$ avec $a \neq 0$, on calcule le discriminant $\Delta = b^2 - 4ac$:

- si $\Delta = 0$ alors l'équation (E) admet une racine double $z_0 = -\frac{b}{2a}$ si $\Delta \neq 0$, alors l'équation admet deux racines distinctes : $z_{\pm} = \frac{-b \pm \delta}{2a}$ où δ est une racine carrée de Δ

III-3) Equation $z^n = 1$, racines n^{ieme} de l'unité $(n \in \mathbb{N}^*)$

Equation $z^n = 1$: racine n^{ieme} de l'unité DÉFINITION

Les solutions dans \mathbb{C} de l'équation $z^n = 1$ sont appelés les racines n^{ieme} de l'unité.

Description des racines nieme de l'unité PROPOSITION

• Il existe exactement n racines n^{ieme} de l'unité qui sont les nombres complexes

$$\omega_k = e^{\frac{2ik\pi}{n}} = \omega_1^k \text{ pour } k \in \{0, 1, \dots, n-1\} \text{ (ou encore pour } k \in [0, n-1])$$

 $\omega_k = e^{\frac{2ik\pi}{n}} = \omega_1^k \text{ pour } k \in \{0,1,\dots,n-1\} \text{ (ou encore pour } k \in [0,n-1])$ Dans le plan complexe, les n racines de l'unité sont les affixes des sommets d'un polygone régulier à n côté inscrit dans le cercle unité.

- Si $n \in \mathbb{N} \{0,1\}$ et si $(\omega_k)_{k \in [0,n-1]}$ sont les racines n^{ieme} de l'unité alors $\sum_{k=0}^{n-1} \omega_k = 0$ et $\prod_{k=0}^{n-1} \omega_k = (-1)^{n-1}$
- On note \mathbb{U}_n l'ensemble des racines n^{ieme} de l'unité. On a : $\forall (\omega, \omega') \in \mathbb{U}_n \times \mathbb{U}_n$, $\omega.\omega' \in \mathbb{U}_n$, $\overline{\omega} = \frac{1}{\omega} \in \mathbb{U}_n$
- Si ω est une racine n^{ieme} de l'unité différente de 1 : $1 + \omega + \omega^2 + \cdots + \omega^{n-1} = 0$

III-4) Equation $z^n = a$ où $a \in \mathbb{C}$ est fixé, racines n^{ieme} d'un nombre complexe $(n \in \mathbb{N}^*)$

Equation $z^n=a$ où $a\in\mathbb{C}$ est fixé : racine n^{ieme} d'un nombre complexe Définition

Si $a \in \mathbb{C}$ est fixé, les solutions dans \mathbb{C} de l'équation $z^n = a$ sont appelés les racines n^{ieme} du complexe a. Si $a \in \mathbb{C}^*$ est fixé, il y a exactement n racine n^{ieme} du complexe a