Démonstrations exigibles sur le chapitre VII

PROPOSITION

Distance d'un point à une droite

Si \mathcal{D} est une droite du plan issue de A normal à \overrightarrow{n} alors

la distance d'un point M à la droite \mathcal{D} est $d(A,\mathcal{D}) = AH = \frac{|\overrightarrow{n}.\overrightarrow{AM}|}{\|\overrightarrow{n}\|}$ où H est le projeté de M sur \mathcal{D}

Lorsque $M(x_M; y_M)$ et lorsque \mathcal{D} est donnée par une équation \mathcal{D} : ax + by + c = 0 où $(a, b, c) \in \mathbb{R}^3$ sont fixés alors $d(A, \mathcal{D}) = \frac{|ax_m + by_M + c|}{\sqrt{a^2 + b^2}}$

• Par définition : $d(M, \mathcal{D}) = \min \{MP \mid P \in \mathcal{D}\}$ Montrons que : $d(M, \mathcal{D}) = MH$ où H est le projeté orthogonal de M sur \mathcal{D} . On a : $\forall P \in \mathcal{D}$, $MP^2 = \overrightarrow{MP}.\overrightarrow{MP} = (\overrightarrow{MH} + \overrightarrow{HP}).(\overrightarrow{MH} + \overrightarrow{HP}) = MH^2 + HP^2 + 2$ $\overrightarrow{MH}.\overrightarrow{MP}$

Ainsi : $\forall P \in \mathcal{D}$, $MP^2 = MH^2 + HP^2 \geqslant MH^2$ avec égalité si P = H donc on a bien $d(M, \mathcal{D}) = MH$

• Or, si $A \in \mathcal{D}$ et \overrightarrow{n} est un vecteur normal à \mathcal{D} , on a :

$$\overrightarrow{AM}.\overrightarrow{n} = (\overrightarrow{AH} + \overrightarrow{HM}).\overrightarrow{n} = \underbrace{\overrightarrow{AH}.\overrightarrow{n}}_{=\overrightarrow{0}} + \underbrace{\overrightarrow{HM}.\overrightarrow{n}}_{=\overrightarrow{I}} = \pm HM \times ||\overrightarrow{n}|| \text{ d'où } d(M,\mathcal{D}) = \frac{|\overrightarrow{AM}.\overrightarrow{n}|}{||\overrightarrow{n}||}.$$

• Si \mathcal{D} : ax + by + c = 0 alors $\overrightarrow{n} \begin{pmatrix} a \\ b \end{pmatrix}$ est un vecteur normal de \mathcal{D} et donc, si $A(x_A, y_A)$, on a :

$$\overrightarrow{AM}.\overrightarrow{n} = a(x_M - x_A) + b(y_M - y_A) = ax_M + by_M - (ax_A + by_A) = ax_M + by_M + c \quad \text{car } A \in \mathcal{D} \Rightarrow ax_A + by_A + c = 0$$

$$\text{Conclusion:} \boxed{d(M, \mathcal{D}) = \frac{|ax_M + by_M + c|}{\sqrt{a^2 + b^2}}}.$$