Devoir surveillé n° 1 de mathématiques

Durée : 3 heures - La calculatrice n'est pas autorisée.

Les 4 exercices sont indépendants et sont prévus pour une durée de 45 minutes. Chaque exercice sera noté sur 5 points.

Exercice n°1 Étude d'une fonction

On considère l'application
$$f$$
 définie par $f(x) = \frac{\sin x}{\sqrt{5 - 4\cos x}}$

- 1) Donner le domaine de définition de la fonction f et justifier qu'il suffit d'étudier f sur $[0, \pi]$ Comment obtenir la courbe représentant f sur la totalité de son domaine de définition à partir du tracé sur $[0, \pi]$?
- 2) a) Démontrer que $-2\cos^2 x + 5\cos x 2$ a le même signe que $2\cos x 1$ sur $[0, \pi]$.
 - b) Justifier soigneusement la continuité et la dérivabilité de f sur $[0, \pi]$ et calculer le nombre f'(x) lorsque $x \in [0, \pi]$.
- 3) a) Donner le tableau des variations de f sur $[0, \pi]$.
 - b) Tracer la courbe représentative de f sur $[0,\pi]$ en trait plein puis sa représentation sur $[-\pi,\pi]$ en pointillés. (unités : $6\ cm$ pour π en abscisse et $6\ cm$ pour une unité en ordonnée)

Exercice n°2 | Équation et inéquations trigonométrique

- 1°/ Résoudre sur $\mathbb R$ l'équation : (E) $2\sin^2 x + 2\cos\sin x 1 = 0$
- $2^{\circ}/$ a) Quel est le signe de $u(x) = 2\cos(4x) 1$ sur $\left[0, \frac{\pi}{4}\right]$? En utilisant des propriétés de u, en déduire le signe de u(x) sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$. Établir enfin que le signe de u(x) sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est :

x	$-\pi/2$		$-5\pi/12$		$-\pi/12$		$\pi/12$		$5\pi/12$		$\pi/2$
u(x)		+	0	_	0	+	0	_	0	+	

b) Résoudre sur $[-\frac{\pi}{2},\frac{\pi}{2}]$ l'inéquation : $~(I)~\sin(5x)-\sin(3x)>\sin(x)$

Exercice n°3 Étude de solutions d'un problème de Cauchy à paramètre

On considère l'équation différentielle
$$(1-x)y' + xy = e^x$$
 (E) et on note $I_1 =]-\infty, 1[$ et $I_2 =]1, +\infty[$ les deux intervalles de \mathbb{R} .

- 1) Trouver une solution simple sur \mathbb{R} de cette équation différentielle.
- 2) Si I est l'un des intervalles I_1 ou I_2 , résoudre (E) sur I.
- 3) En déduire les solutions de (E) sur \mathbb{R} .

Dans la suite, on appelle f_k l'unique solution de (E) sur \mathbb{R} vérifiant $f_k(0) = k$ et on note \mathcal{C}_k sa courbe représentative dans un repère orthonormé $(O; \overrightarrow{\imath}, \overrightarrow{\jmath})$ du plan.

4) Déterminer $f_k(x)$. Donner un DL à l'ordre 2 en 0 de f_k . Vérifier alors que les tangentes aux courbes \mathcal{C}_k au point d'abscisse 0 sont toutes parallèles lorsque k décrit \mathbb{R} .

Exercice n°4 Résolutions d'équations différentielles linéaire d'ordre 1

- 1) Résoudre sur \mathbb{R} l'équation (E_1) : $y' + 2y = -10e^{3x} + e^{2x}\sin(x)$
- 2) Résoudre sur $I =]0, +\infty[$ l'équation (E_2) : $x(1 + \ln^2(x))y' + 2(\ln x)y = 1$