Correction du DS n°1 des élèves de PTSI

Étude d'une fonction On considère l'application f définie par $f(x) = \frac{\sin x}{\sqrt{5 - 4\cos x}}$ Exercice N°1

- 1) Donner le domaine de définition de la fonction f et justifier qu'il suffit d'étudier f sur $[0,\pi]$ Comment obtenir la courbe représentant f sur la totalité de son domaine de définition à partir du tracé sur $[0,\pi]$?
- On sait que, pour tout x réel : $-1 \le \cos x \le 1 \Leftrightarrow 0 \le 1 \le 5 4\cos x \le 9 \Leftrightarrow 1 \le \sqrt{5 4\cos x} \le 3$ en composant par $\sqrt{}$ strictement croissante sur \mathbb{R}_+

Dès lors, la fonction f est correctement définie sur \mathbb{R} : c'est le quotient de la fonction $[x \mapsto \sin x]$ par la fonction $[x \mapsto \sqrt{5-4\cos x}]$ qui ne s'annule pas sur \mathbb{R} .

• La fonction f est clairement 2π périodique : $\forall x \in \mathbb{R}, \ x \in \mathbb{R} \Leftrightarrow x + 2\pi \in \mathbb{R} \text{ et } f(x + 2\pi) = \frac{\sin(x + 2\pi)}{\sqrt{5 - 4\cos(x + 2\pi)}} = \frac{\sin x}{\sqrt{5 - 4\cos x}} = f(x)$

et elle est impaire : $\forall x \in \mathbb{R}, -x \in \mathbb{R}$ et $f(-x) = \frac{\sin(-x)}{5 - 4\cos(-x)} = \frac{-\sin(x)}{5 - 4\cos(x)} = -f(x)$ Il suffit donc d'étudier la fonction f sur $[0, \pi]$: à partir du tracée représentant f sur $[0, \pi]$, on obtient la courbe représentant f sur $[-\pi, \pi]$ en réalisant une symétrie de centre O puis, à partir du tracé sur $[-\pi,\pi]$, on obtient la totalité de la courbe représentative de f sur $\mathbb R$ par des translations de vecteurs $2\pi k \vec{\imath} \ (k \in \mathbb{Z})$.

2) a) Démontrer que $-2\cos^2 x + 5\cos x - 2$ a le même signe que $2\cos x - 1$ sur $[0, \pi]$.

On remarque que : $-2\cos^2 x + 5\cos x - 2 = P(\cos x)$ où $P(X) = -2X^2 + 5X - 2$.

Le discriminant de P est $\Delta = 25 - 4 \times (-2) \times (-2) = 9$, il a donc deux racines $X_1 = \frac{-5 - 3}{-4} = 2$ et $X_2 = \frac{-5 + 3}{-4} = \frac{1}{2}$

aussi P(X) se factorise en $P(X) = -2X^2 + 5X - 2 = -2(X-2)(X-1/2) = (2-X)(2X-1)$

Ainsi: $\forall x \in \mathbb{R}, -2\cos^2 x + 5\cos x - 2 = P(\cos x) = (2 - \cos x)(2\cos x - 1)$

Mais: $\forall x \in \mathbb{R}, -1 \le \cos x \le 1 \Rightarrow 2 - \cos x > 0$ donc le signe de $-2\cos^2 x + 5\cos x - 2$ est celui de $2\cos x - 1$

Ainsi : l'expression $-2\cos^2 x + 5\cos x - 20$ sur $[0,\pi]$ (ou sur \mathbb{R}) a le même signe que l'expression $2\cos x - 1 > 0$

b) Justifier soigneusement la continuité et la dérivabilité de f sur $[0,\pi]$ et calculer le nombre f'(x) lorsque $x \in [0,\pi]$.

D'après les théorèmes usuels, la fonction $[x \mapsto 5 - 4\cos x]$ est clairement continue et dérivable sur $[0,\pi]$.

Elle est à valeurs dans [1, 9] d'après les calculs de la question 1).

Or, la fonction racine est continue sur \mathbb{R}_+ et dérivable sur $[0, +\infty[$ donc elle est continue et dérivable sur [1, 9].

Aussi, par composition, $[x \mapsto \sqrt{5-4\cos x}]$ est continue et dérivable sur $[0,\pi]$ où elle est à valeurs dans [1,3].

La fonction sinus est continue et dérivable sur $[0,\pi]$ et la fonction $[x\mapsto\sqrt{5}-4\cos x]$ continue et dérivable sur $[0,\pi]$ et elle ne s'annule pas sur $[0,\pi]$ donc le quotient f de ces fonctions est une fonction continue et dérivable sur $[0,\pi]$

La fonction f est continue et dérivable sur $[0,\pi]$

De plus, pour tout x dans $[0, \pi]$, on a

$$f'(x) = \frac{\cos x \times \sqrt{5 - 4\cos x} - (\sqrt{5 - 4\cos x})' \times \sin x}{5 - 4\cos x} = \frac{\cos x \times \sqrt{5 - 4\cos x} - \frac{4\sin x}{2\sqrt{5 - 4\sin x}} \times \sin x}{5 - 4\cos x}$$
$$= \frac{\cos x \times (5 - 4\cos x) - 2\sin^2 x}{(5 - 4\cos x)\sqrt{5 - 4\cos x}}$$

3) a) Donner le tableau des variations de f sur $[0,\pi]$

On sait que, pour tout x réel :

$$5 - 4\cos x > 0 \quad \text{et} \quad \sqrt{5 - 4\cos x} > 0$$

donc le signe de f'(x) sur $[0,\pi]$ est celui de $-2\cos^2 x + 5\cos x - 2$ autrement dit celui de $2\cos x - 1$ d'après la question I-2-a. Sur $[0,\pi]$:

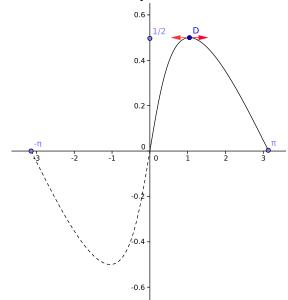
- $2\cos x 1 = 0 \Leftrightarrow \cos x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{3}$ $2\cos x 1 > 0 \Leftrightarrow \cos x > \frac{1}{2} \Leftrightarrow x \in [0, \frac{\pi}{3}[$

Enfin, clairement: $f(0) = f(\pi) = 0$ et $f(\pi/3) = \frac{\sqrt{3}}{2} = \frac{1}{2}$

On peut donc construire le tableau:

1					
x	0		$\pi/3$		π
f'(x)		+	0	_	
			1/2		
f		7		×	
	0				0

b) Tracer la courbe représentative de f sur $[0,\pi]$ en trait plein puis sa représentation sur $[-\pi,\pi]$ en pointillés. (unités : 6 cm pour π en abscisse et 6 cm pour une unité en ordonnée)



Exercice n°2 | Équation et inéquations trigonométrique

1°/ Résoudre sur \mathbb{R} l'équation : (E) $2\sin^2 x + 2\cos\sin x - 1 = 0$

On sait que :
$$\forall x \in \mathbb{R}$$
, $1 - 2\sin^2 x = \cos(2x)$ et $2\sin x \cos x = \sin(2x)$ aussi : $(E_2) \Leftrightarrow -\cos(2x) + \sin(2x) = 0 \Leftrightarrow \cos(2x) = \sin(2x) = \cos\left(\frac{\pi}{2} - 2x\right) \Leftrightarrow 2x \equiv \frac{\pi}{2} - 2x \left[2\pi\right]$ ou $2x \equiv -\frac{\pi}{2} + 2x \left[2\pi\right]$ $\Leftrightarrow 4x \equiv \frac{\pi}{2} \left[2\pi\right]$ ou $0 \equiv -\frac{\pi}{2} \left[2\pi\right] \Leftrightarrow x \equiv \frac{\pi}{8} \left[\frac{\pi}{2}\right]$

Finalement, l'ensemble S des solutions de (E) est

$$\boxed{\mathcal{S} = \left\{ \frac{\pi}{8} + k \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}}$$

 $2^{\circ}/$ a) Quel est le signe de $u(x)=2\cos(4x)-1$ sur $[0,\frac{\pi}{4}]$?

En utilisant des propriétés de u, en déduire le signe de u(x) sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$.

Établir enfin que le signe de u(x) sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est

. .	x	$-\pi/2$		$-5\pi/12$		$-\pi/12$		$\pi/12$		$5\pi/12$		π
ι.	u(x)		+	0	_	0	+	0	_	0	+	

Si $x \in [0, \frac{\pi}{4}]$ alors $4x \in [0, \pi]$ et donc :

- $2\cos(4x) 1 = 0 \Leftrightarrow \cos(4x) = \frac{1}{2} \Leftrightarrow 4x = \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{12}$ Attention! $4x \in [0, \pi]...$ $2\cos(4x) 1 \geqslant 0 \Leftrightarrow \cos(4x) \geqslant \frac{1}{2} \Leftrightarrow 0 \leqslant 4x \leqslant \frac{\pi}{3} \Leftrightarrow 0 \leqslant x \leqslant \frac{\pi}{12}$

On obtient donc le tableau de signe suivant

	x	0		$\pi/12$		$\pi/4$
•	u(x)		+	0	_	

Mais, la fonction u est paire puisqu'elle est définie sur \mathbb{R} , centré en 0, et vérifie $\forall x \in \mathbb{R}$, u(-x) = u(x)

Par ailleurs, u est $\frac{\pi}{2}$ périodique puisque : $\forall x \in \mathbb{R}$, $u(x+\frac{\pi}{2})=2\cos(4x+2\pi)-1=2\cos(x)-1=u(x)$.

A partir du signe de u(x) sur $[0,\frac{\pi}{4}]$ on déduit le signe de u(x) sur $[-\frac{\pi}{4},\frac{\pi}{4}]$ par parité

			0		()		L / 4
x	$-\pi/4$		$-\pi/12$		$\pi/12$		$\pi/4$
u(x)		_	0	+	0	_	

puis par périodicité on obtient celui sur $\left[-\frac{\pi}{4}, \frac{3\pi}{4}\right]$:

()														
x	$-\pi/4$		$-\pi/12$		$\pi/12$		$5\pi/12$		$7\pi/12$		$3\pi/4$	puisque	π ,	π
u(x)		_	0	+	0	_	0	+	0	_		puisque	$\overline{12}$	$\overline{2}$

puisque
$$-\frac{\pi}{12} + \frac{\pi}{2} = \frac{5\pi}{12}, \ \frac{\pi}{12} + \frac{\pi}{2} = \frac{7\pi}{12}$$

et donc, par parité à nouveau, on a : u(x)

b) Résoudre sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ l'inéquation : (I) $\sin(5x) - \sin(3x) > \sin(x)$

En utilisant les relations de trigonométrie, on sait que :

$$\forall x \in \mathbb{R}, \quad \sin(5x) - \sin(3x) = \sin\left(\frac{5x + 3x}{2} + \frac{5x - 3x}{2}\right) - \sin\left(\frac{5x + 3x}{2} - \frac{5x - 3x}{2}\right) = 2\sin\left(\frac{5x - 3x}{2}\right)\cos\left(\frac{5x + 3x}{2}\right)\cos\left(\frac{5x + 3x}{2}\right)$$
soit:
$$\forall x \in \mathbb{R}, \quad \sin(5x) - \sin(3x) = 2\sin(x)\cos(4x) \quad \text{et} : \quad (I) \Leftrightarrow 2\sin(x)\cos(4x) > \sin(x) \Leftrightarrow \sin(x) \times (2\cos(4x) - 1) > 0$$

On utilise alors un tableau de signe pour résoudre sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$:

x	$-\pi/2$		$-5\pi/12$		$-\pi/12$		0		$\pi/12$		$5\pi/12$		$\pi/2$
$\sin(x)$		_		_		_	0	+		+		+	
u(x)		+	0	_	0	+		+	0	_	0	+	
$\sin(x) \times u(x)$		_	0	+	0	_	0	+	0	_	0	+	

L'ensemble des solutions sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ de (I) est donc $\left|\mathcal{S}=\right| - \frac{5\pi}{12}, -\frac{\pi}{12}[\cup]0, \frac{\pi}{12}[\cup]\frac{5\pi}{12}, \frac{\pi}{2}$

EXERCICE N°3 On considère l'équation différentielle $(1-x)y' + xy = e^x$ (E) et on note $I_1 =]-\infty, 1[$ et $I_2 =]1, +\infty[$ les deux intervalles de $\mathbb R$

1) Trouver une solution simple sur \mathbb{R} de cette équation différentielle.

La fonction exp est continue et dérivable sur \mathbb{R} et : $\forall x \in \mathbb{R}$, $(1-x)\exp'(x) + x\exp(x) = (1-x)e^x + xe^x = e^x$ aussi la fonction exponentielle est une solution évidente de (E) sur \mathbb{R}

2) Si I est l'un des intervalles I_1 ou I_2 , résoudre (E) sur I

On connaît déjà une solution particulière de (E) sur \mathbb{R} donc aussi sur I.

Il nous suffit donc de déterminer les solutions homogènes autrement dit les solutions sur I de : (1-x)y' + y = 0 (H)

Or, sur
$$I$$
, $1 - x \neq 0$ donc : $(H) \Leftrightarrow y' + \frac{x}{1 - x}y = 0$ or la fonction $\left[a : x \mapsto \frac{1}{1 - x}\right]$ est continue sur I

Elle admet donc des primitives et : $\forall x \in I$, $a(x) = \frac{x-1+1}{1-x} = -1 + \frac{1}{1-x} = -1 - \frac{1}{x-1} = \left(-x-\ln|x-1|\right)'$ de sorte que les solutions de (H) sont les fonctions h_C , où C est une constante réelle, donnée par l'expression :

 $\forall x \in I$, $h_C(x) = C \exp(x + \ln|x - 1|) = C \times e^x \times |x - 1|$ Or, x - 1 garde un signe constant sur I donc

l'ensemble des solutions homogènes sur
$$I$$
 est $\mathcal{S}_{(H)} = \left\{ \left[egin{array}{ccc} \mathbb{R} & o & \mathbb{R} \\ x & \mapsto & \lambda(x-1)e^x \end{array} \right] \ \middle| \ \lambda \in \mathbb{R}
ight\}$

l'ensemble des solutions homogènes sur
$$I$$
 est $\mathcal{S}_{(H)} = \left\{ \begin{bmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \lambda(x-1)e^x \end{bmatrix} \mid \lambda \in \mathbb{R} \right\}$
Finalement, l'ensemble des solutions sur I de (E) est $\mathcal{S}_I = \left\{ \begin{bmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x + \lambda(x-1)e^x \end{bmatrix} \mid \lambda \in \mathbb{R} \right\}$

3) En déduire les solutions de (E) sur \mathbb{R} .

Pour trouver les solutions sur \mathbb{R} , on réalise un recollement de solutions en 1.

Analyse On cherche des conditions nécessaires sur f pour que f soit une solution de (E) sur \mathbb{R} .

Si f est une solution de (E) sur \mathbb{R} alors :

• c'est une solution sur I_1 et I_2 donc il existe des constantes réelles λ_1 et λ_2 telles que :

$$\forall x \in I_1, \quad f(x) = e^x + \lambda_1(x-1)e^x \quad \text{et} \quad \forall x \in I_2, \quad f(x) = e^x + \lambda_2(x-1)e^x$$

• f doit être continue en 1 c'est à dire que $\lim_{x\to 1^-} f(x)$ et $\lim_{x\to 1^+} f(x) \in \mathbb{R}$ existent dans \mathbb{R} et sont égales :

Si
$$\lambda \in \mathbb{R}$$
: $\underbrace{e^x}_{x \to 1^-} + \underbrace{\lambda(x-1)e^x}_{x \to 1} = e$ donc $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1)$ pour (λ_1, λ_2) quelconques dans \mathbb{R}^2

•
$$f$$
 doit être dérivable en 1 c'est à dire que $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$ et $\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1}$ existent dans \mathbb{R} et sont égales : Mais : $\forall x > 1$, $\frac{f(x) - f(1)}{x - 1} = \underbrace{\frac{e^x + \lambda_1(x - 1)e^x - e}{x - 1}}_{x - 1} = \underbrace{\frac{e^x - e}{x - 1}}_{x \to 1} + \underbrace{\frac{\lambda_1 e^x}{x \to 1}}_{x \to 1} \lambda_1 e + \underbrace{\frac{\lambda_1 e^x}{x \to 1}}_{x \to 1} \lambda_1 e$

 $\frac{f(x) - f(1)}{x - 1} \xrightarrow[x \to 1^{-}]{} \lambda_{2}e + e \quad \text{aussi la dérivabilité en 1 impose} : \quad e + \lambda_{1}e = e + \lambda_{2}e \iff \lambda_{1} = \lambda_{2}$

On a donc justifié que, si f est une solution sur \mathbb{R} de (E), alors : $\exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = e^x + \lambda(x-1)e^x$ Synthèse Si on note $\mathcal{S}_{\mathbb{R}}$ est l'ensemble des solutions sur \mathbb{R} de l'équation (E), l'analyse a prouvé que :

$$\mathcal{S}_{\mathbb{R}} \subset \left\{ \left[egin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x + \lambda(x-1)e^x \end{array}
ight] \ \Big| \ \lambda \in \mathbb{R}
ight\}$$

 $\mathcal{S}_{\mathbb{R}} \subset \left\{ \left[\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x + \lambda(x-1)e^x \end{array} \right] \middle| \lambda \in \mathbb{R} \right\}$ Puisque les fonctions du type $[x \mapsto e^x + \lambda(x-1)e^x]$ où $\lambda \in \mathbb{R}$ sont bien continues et dérivables sur \mathbb{R} et qu'elles vérifient

l'équation
$$(E)$$
 (en 1) : $0 \times f'(1) + 1 \times f(1) = e = e^1$, l'autre inclusion est vraie et donc :
L'ensemble des solutions sur \mathbb{R} de l'équation (E) est $\mathcal{S}_{\mathbb{R}} = \left\{ \begin{bmatrix} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & e^x + \lambda(x-1)e^x \end{bmatrix} \mid \lambda \in \mathbb{R} \right\}$

Dans la suite, on appelle f_k l'unique solution de (E) sur \mathbb{R} vérifiant $f_k(0) = k$ et on note \mathcal{C}_k sa courbe représentative dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$ du plan.

4) Déterminer $f_k(x)$. Donner un DL à l'ordre 2 en 0 de f_k .

Vérifier alors que les tangentes aux courbes \mathcal{C}_k au point d'abscisse 0 sont toutes parallèles lorsque k décrit \mathbb{R} .

Déterminons la fonction f_k . On sait que : $\exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f_k(x) = e^x + \lambda(x-1)e^x$ de sorte que : $f_k(0) = 1 + \lambda \times -1 = 1 - \lambda$ et, par suite : $f_k(0) = k \Leftrightarrow 1 - \lambda = k \Leftrightarrow \lambda = 1 - k$

Finalement, on a donc:
$$\forall x \in \mathbb{R}$$
, $f_k(x) = e^x + (1-k)(x-1)e^x$. Cherchons alors un DL_2 en 0 de f_k :
$$f_k(x) = \left(1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)\right) + (1-k)(x-1)\left(1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)\right) \quad \text{où} \quad \varepsilon(x) \xrightarrow[x \to 0]{} 0$$

$$= 1 - (1-k) + (1+(1-k) - (1-k))x + \left(\frac{1}{2} + (1-k) - \frac{1-k}{2}\right)x^2$$

$$+ x^2 \times \underbrace{\left(\varepsilon(x) + (1-k)\frac{x}{2} + (1-k)x\varepsilon(x) - (1-k)\varepsilon(x)\right)}_{=\varepsilon_1(x)}$$

Finalement, le
$$DL_2$$
 en 0 de f_k est $f_k(x) = k + x + \left(1 - \frac{k}{2}\right)x^2 + x^2\varepsilon_1(x)$ où $\varepsilon_1(x) \xrightarrow[x \to 0]{} 0$

Pour démontrer que des droites sont toutes parallèles, il suffit de justifier qu'elles ont toutes la même pente.

Or, la pente des tangentes au point d'abscisse 0 des courbes \mathcal{C}_k est le réel $f'_k(0)$. Déterminons ce réel $f'_k(0)$.

Comme f_k admet un $DL_2(0)$, elle admet aussi un $DL_1(0)$ aussi elle est dérivable en 0 et le nombre $f'_k(0)$ est le coefficient en x du DL donc : $\forall k \in \mathbb{R}, f'_k(0) = 1$

Comme $f'_k(0)$ ne dépend pas de k, toutes les tangentes au point d'abscisse 0 des courbes \mathcal{C}_k sont parallèles lorsque $k \in \mathbb{R}$

Exercice N°4

1) Résoudre sur \mathbb{R} l'équation (E_1) : $y' + 2y = -10e^{3x} + e^{2x}\sin(x)$

L'équation est résolue sur \mathbb{R} .

• Équation homogène : Il est clair que l'ensemble des solutions homogènes est

$$\mathcal{S}_{H_1} = \left\{ [x \mapsto Ce^{-2x}] \mid C \in \mathbb{R} \right\}$$

• Solution particulière : On utilise le principe de superposition des solutions.

 1° On cherche une solution particulière y_1 de $y' + 2y = -10e^{3x}$ sous la forme $y_1(x) = \alpha e^{3x}$ où $\alpha \in \mathbb{R}$ y_1 est solution sur \mathbb{R} de $y' + 2y = -e^x \Leftrightarrow \forall x \in \mathbb{R}, \ 3\alpha e^{3x} + 2\alpha e^{3x} = -10e^{3x} \Leftrightarrow 5\alpha = -10 \Leftrightarrow \alpha = -2$ ainsi y_1 donnée par : $y_1(x) = -2e^{3x}$ convient.

 2° / On cherche une solution particulière y_2 de $y' + 2y = e^{2x} \sin(x)$

On remarque que :
$$\forall x \in \mathbb{R}$$
, $e^{2x} \sin(x) = \Im(e^{2x} e^{ix}) = \Im(e^{(2+i)x})$

Aussi, on recherche y_2 sous la forme $y_2 = \Im m(z)$ avec z solution particulière de $y' + 2y = e^{(2+i)x}$. On recherche alors z sous la forme $z(x) = \alpha e^{(2+i)x}$ où $\alpha \in \mathbb{C}$

z est solution sur
$$\mathbb{R}$$
 de $y' + 2y = e^{(2+i)x} \Leftrightarrow \forall x \in \mathbb{R}, \ (2+i)\alpha e^{(2+i)x} + 2\alpha e^{(2+i)x} = e^{(2+i)x} \Leftrightarrow (4+i)\alpha = 1$

The confidence alons z sous in forme
$$z(x) = \alpha e^{-(x)}$$
 of $\alpha \in \mathbb{C}$ of $\alpha \in \mathbb{C}$ z est solution sur \mathbb{R} de $y' + 2y = e^{(2+i)x} \Leftrightarrow \forall x \in \mathbb{R}$, $(2+i)\alpha e^{(2+i)x} + 2\alpha e^{(2+i)x} = e^{(2+i)x} \Leftrightarrow (4+i)\alpha = 1$
Aussi: $\alpha = \frac{1}{4+i} = \frac{4-i}{17}$ et donc $y_2(x) = \Im m \left(\frac{4-i}{17} e^{(2+i)x} \right) = e^{2x} \Im m \left(\frac{4-i}{17} e^{ix} \right) = \frac{4}{17} e^{2x} \sin(x) - \frac{1}{17} e^{2x} \cos(x)$

Finalement, par superposition des solutions, $y_1 + y_2$ est une solution particulière de (E_1) et l'ensemble des solutions de (E_2) est:

$$S_2 = \left\{ \left[x \mapsto Ce^{-2x} - 2e^{3x} + \frac{4}{17}e^{2x}\sin(x) - \frac{1}{17}e^{2x}\cos(x) \right] \mid C \in \mathbb{R} \right\}$$

2) Résoudre sur $I = [0, +\infty[$ l'équation $(E_2): x(1 + \ln^2(x))y' + 2(\ln x)y = 1$

L'équation est résolue sur I car $x \neq 0$ et $1 + \ln^2(x) > 0$ sur I.

• Équation homogène : On résout l'équation :
$$(H_2)$$
 : $y' + \frac{2(\ln x)}{x(1+(\ln x)^2)}y = 0$

Il s'agit donc de trouver une primitive sur I à la fonction a donnée par : $a(x) = \frac{2(\ln x)}{x(1+(\ln x)^2)}$

Si on introduit
$$u$$
 sur I donnée par $u(x) = 1 + (\ln x)^2$ alors, par les théorèmes usuels, u est dérivable sur I et : $u'(x) = 2 \times \frac{1}{x} \times \ln x$ de sorte que : $\forall x \in I$, $a(x) = \frac{u'(x)}{u(x)} = \left(\ln |u(x)|\right)' = \left(\ln(1 + \ln^2(x))\right)'$ puisque $u(x) > 0$ sur I

Finalement, l'ensemble des solutions de (H) sur I est

$$S_{H_2} = \left\{ \left[x \mapsto C \exp\left(-\ln(1 + \ln^2(x))\right) \right] \mid C \in \mathbb{R} \right\} = \left\{ \left[x \mapsto \frac{C}{1 + \ln^2(x)} \right] \mid C \in \mathbb{R} \right\}$$

• Solution particulière : On applique la méthode de variation de la constante. On cherche une solution sous la forme

$$[y_0: x \mapsto C(x)h(x)]$$
 où C est une fonction dérivable sur I et $\left[h: x \mapsto \frac{1}{1+\ln^2(x)}\right]$ est une solution homogène de (E) .

$$y_0 \text{ est solution de } (E) \text{ sur } I \quad \Leftrightarrow \quad \forall x \in I, C'(x)h(x) + \underbrace{C(x)h'(x) + \frac{2(\ln x)^2}{x(1 + (\ln x)^2)}C(x)h(x)}_{=0 \text{ car } h \text{ solution homogene de } (E)} = \frac{1}{x(1 + \ln^2(x))}$$

$$\Leftrightarrow \quad \forall x \in I, C'(x)h(x) = \frac{1}{x(1 + \ln^2(x))}$$

$$=0 \text{ car } h \text{ solution homogène } 0$$

$$\Leftrightarrow \forall x \in I, C'(x)h(x) = \frac{1}{x(1+\ln^2(x))}$$

$$\Leftrightarrow \forall x \in I, C'(x) = \frac{1}{x} = \left(\ln x\right)'$$
 en utilisant l'expression de $h(h(x) \neq 0)$

Finalement, une solution particulière de (E_2) est $[y_0: x \mapsto \frac{\ln x}{1 + \ln^2(x)}]$ et l'ensemble des solutions de (E_2) est :

$$\mathcal{S}_2 = \left\{ \left[x \mapsto \frac{\ln x + C}{1 + \ln^2(x)} \right] \mid C \in \mathbb{R} \right\}$$