PTSI : Correction des TD du chapitre II

Séance du 29/09/2011

Exercice E-1 Recollement de solution

- 1) Résolution de (E): (1-x)y'-y=x
- On résout l'équation sur $I =]1; +\infty[$ ou $I =]-\infty; 1[$ et alors : $(E) \Leftrightarrow y' \frac{1}{1-x} y = \frac{x}{1-x}$ On résout d'abord l'équation homogène : (H) $y' \frac{1}{1-x} y = 0$

La fonction $\left[a:x\mapsto -\frac{1}{1-x}\right]$ est continue sur I et une primitive de a est $\left[A:x\mapsto \ln|1-x|\right]$

L'ensemble des solutions de (H) est donc : $S_H = \left\{ [x \mapsto \lambda e^{-\ln|1-x|}] \mid \lambda \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \mapsto \frac{\lambda}{|1-x|} \end{bmatrix} \mid \lambda \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} x \mapsto \frac{\lambda}{|1-x|} \end{bmatrix} \mid C \in \mathbb{R} \right\}$

- 1ere méthode : Solution analogue au second membre

On cherche une solution particulière y_0 de (E) sous la forme $y_0(x) = ax + b$ avec $(a,b) \in \mathbb{R}^2$ y_0 est alors clairement une fonction dérivable sur \mathbb{R} (donc sur I) et :

 y_0 est une solution de (E) sur $I \Leftrightarrow \forall x \in I, (1-x)a - ax - b = x$

$$\Leftrightarrow \ \, \forall x \in I, \quad -2ax+a-b=0 \,\, \text{donc il suffit d'avoir} \left\{ \begin{array}{l} -2a=1 \\ a-b=0 \end{array} \right. \Leftrightarrow a=b=-\frac{1}{2}$$
 Une solution particulière de (E) est donc $\left[y_0: x \mapsto -\frac{1}{2}(x+1) \right]$

-2eme méthode Variations de la constante

On cherche une solution particulière y_0 de (E) sous la forme $y_0(x) = \lambda(x) \times h(x)$ où $\begin{cases} [\lambda: I \to \mathbb{R}] \text{ est dérivable sur } I \\ [h: x \mapsto \frac{1}{1-x}] \end{cases}$ est solution de (H) y_0 est une solution de (E) sur I $\Leftrightarrow \forall x \in I, \quad \lambda'(x)h(x) + \underbrace{\lambda(x) \times h'(x) - \frac{1}{1-x} \times \lambda(x) \times h(x)}_{=0} = \frac{x}{1-x} = x \times h(x)$ $\Leftrightarrow \forall x \in I, \quad \lambda'(x) = x = \left(\frac{x^2}{2}\right)' \quad \text{car } h(x) \neq 0 \text{ sur } I$

$$\Leftrightarrow \quad \forall x \in I, \quad \lambda'(x) = x = \left(\frac{x^2}{2}\right)' \qquad \text{car } h(x) \neq 0 \text{ sur } I$$

Une solution particulière y_0 de (E) est donc donnée par : $\forall x \in I, \quad y_0(x) = \frac{1}{2} \times \frac{x^2}{1-x^2}$

Il y a bien égalité entre les deux ensembles car :
$$-\frac{1}{2}(x+1) + \frac{C}{1-x} = \frac{1}{2} \times \frac{x^2-1}{1-x} + \frac{C}{1-x} = \frac{1}{2} \times \frac{x^2}{1-x} + \frac{\lambda}{1-x} \quad \text{où} \quad \lambda = C - \frac{1}{2}$$

ullet On étudie le recollement des solutions en 1 pour trouver les solutions sur $\mathbb R$

Analyse: Si f est une solution sur \mathbb{R} ,

se: Si
$$f$$
 est une solution sur \mathbb{R} ,

- c'est aussi une solution sur $]1; +\infty[$ et sur $]-\infty, 1[$ aussi :
$$\exists C_1 \in \mathbb{R}, \forall x < 1, \quad f(x) = -\frac{x+1}{2} + \frac{C_1}{1-x} \quad \text{et} \quad \exists C_2 \in \mathbb{R}, \forall x > 1, \quad f(x) = -\frac{x+1}{2} + \frac{C_2}{1-x}$$

- f doit être continue en 1 c'est à dire que $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$

$$\text{Or : } \lim_{x \to 1^-} f(x) = \begin{cases} \pm \infty & \text{si } C_1 \neq 0 \\ -1 & \text{si } C_1 = 0 \end{cases} \quad \text{et} \quad \lim_{x \to 1^+} f(x) = \begin{cases} \pm \infty & \text{si } C_2 \neq 0 \\ -1 & \text{si } C_2 = 0 \end{cases}$$
aussi nécessairement $C_1 = 0$ pour assurer la continuité à gauche et $C_2 = 0$ pour assurer la continuité à droite

Or:
$$\lim_{x \to 1^{-}} f(x) = \begin{cases} \pm \infty & \text{si } C_1 \neq 0 \\ -1 & \text{si } C_1 = 0 \end{cases}$$
 et $\lim_{x \to 1^{+}} f(x) = \begin{cases} \pm \infty & \text{si } C_2 \neq 0 \\ -1 & \text{si } C_2 = 0 \end{cases}$

Finalement, s'il y a une solution sur \mathbb{R} , la seule fonction possible est $f: x \mapsto -\frac{x+1}{2}$

Synthèse: On vérifie que cette fonction f est bien dérivable sur \mathbb{R} et qu'elle vérifie l'équation.

C'est donc l'unique solution de (E) sur \mathbb{R}

Finalement, l'équation
$$(E)$$
 a une unique solution sur \mathbb{R} qui est $f: x \mapsto -\frac{x+1}{2}$

- 2) Résolution de (E): $x^3 \ln |x|y' x^2y = 2x \ln^2 |x|$
- On résout l'équation (E) sur $I =]-\infty, -1[$, I =]-1, 0[, I =]0, 1[ou $I =]1; +\infty[$ où : $(E) \Leftrightarrow y' \frac{1}{x \ln |x|} y = \frac{2 \ln |x|}{x^2}$
 - -On résout d'abord l'équation homogène : (H) $y' \frac{1}{r \ln |r|} y = 0$

La fonction $\left|a:x\mapsto -\frac{1}{x\ln|x|}\right|$ est continue sur I et une primitive de a est $[A:x\mapsto -\ln|\ln|x||]$ car $a(x)=-\frac{(\ln|x|)'}{\ln|x|}$ L'ensemble solution de (H) est donc $S_H = \left\{ \begin{bmatrix} I \to \mathbb{R} \\ x \mapsto \lambda e^{\ln|\ln|x||} \end{bmatrix} \mid \lambda \in \mathbb{R} \right\} = \left\{ \begin{bmatrix} I \to \mathbb{R} \\ x \mapsto C \ln|x| \end{bmatrix} \mid C \in \mathbb{R} \right\}$

-On cherche une solution particulière y_0 de (E) à l'aide de la méthode de variation de la constante

en cherchant la solution sous la forme $y_0(x) = C(x) \times h(x)$ où $\begin{cases} [C: I \to \mathbb{R}] \text{ est dérivable sur } I \\ [h: x \mapsto \ln|x|] \text{ est une solution de } (H) \end{cases}$ $y_0 \text{ est une solution de } (E) \Leftrightarrow \forall x \in I, \quad C'(x) \times h(x) + \underbrace{C(x) \times h'(x) - \frac{1}{x \ln|x|} \times C(x) \times h(x)}_{=0 \text{ car } h \text{ solution de } (H)} \Leftrightarrow \forall x \in I, \quad C'(x) \times \ln|x| = \underbrace{\frac{2 \ln|x|}{x^2}}_{=0 \text{ car } h \text{ solution de } (H)}_{=0 \text{ car } h \text{ solution de } (H)}$ aussi : y_0 est une solution de (E)

Une solution particulière y_0 de (E) est donc donnée par : $\forall x \in I$, $y_0(x) = -\frac{2}{r} \ln |x|$

Finalement, l'ensemble des solutions sur I de (E) est $S = \left\{ \begin{bmatrix} I \to \mathbb{R} \\ x \mapsto -\frac{2\ln|x|}{2} + C\ln|x| \end{bmatrix} \mid C \in \mathbb{R} \right\}$.

ullet Il s'agit désormais d'étudier le recollement des solutions pour trouver des solutions sur $\mathbb R$

Analyse: Si f est une solution sur \mathbb{R} ,

- c'est aussi une solution sur]-1;0[et sur]0;1[aussi :

 $\exists C_{-} \in \mathbb{R}, \forall x \in]-1, 0[, \quad f(x) = -\frac{2\ln|x|}{x} + C_{-}\ln|x| \quad \text{et} \quad \exists C_{+} \in \mathbb{R}, \forall x \in]0, 1[, \quad f(x) = -\frac{2\ln|x|}{x} + C_{+}\ln|x|$ $-f \text{ doit être continue en } 0. \quad \text{Or}: \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(\underbrace{-\frac{2}{x} + C_{-}}_{-} \right) \underbrace{\ln|x|}_{-\infty} = \mp \infty$

aussi le recollement continue en 0 est impossible! L'analyse aboutit à : $S \subset \emptyset$...et donc en fait $S = \emptyset$

L'équation (E) n'a donc aucune solution sur \mathbb{R}

• On étudie le recollement en 1 pour trouver des solutions sur $]0; +\infty[$.

Analyse: Si f est une solution sur $]0; +\infty[$ alors:

nalyse: Si f est une solution sur $]0, \neg \infty_1$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes C_1 and $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ are always constantes $[0, \neg \infty_1]$ and $[0, \neg \infty_1]$ are always con

- f doit aussi être dérivable en 1. Or :

 $\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \left(\underbrace{-\frac{2}{x}}_{x \to 1} \times \underbrace{\frac{\ln x}{x - 1}}_{x \to 1^{+}} + C_{1} \underbrace{\frac{\ln x}{x - 1}}_{x \to 1^{+}} \right) = -2 + C_{1} \text{ et, de même, } \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = -2 + C_{2}$

il est donc nécessaire que $-2 + C_1 = -2 + C_2$ soit $C_1 = C_2$ et alors $f'(1) = -2 + C_1$ $L'analyse aboutit à: \mathcal{S} \subset \left\{ \begin{bmatrix}]0; +\infty[& \rightarrow & \mathbb{R} \\ x & \mapsto & -\frac{2\ln x}{x} + C\ln x \end{bmatrix} \mid C \in \mathbb{R} \right\}, \text{ la synthèse vérifie l'autre inclusion}$ $Synthèse: \text{Les fonctions } \left[x \mapsto -\frac{2\ln x}{x} + C\ln x \right] \text{ où } C \in \mathbb{R} \text{ sont bien continues et dérivable sur } \mathbb{R}_+^* \text{ et y vérifie } (E)$

Ainsi, l'équation (E) possède des solution sur $]0; +\infty[$ qui sont les fonctions $\left[x \mapsto -\frac{2\ln x}{x} + C\ln x\right]$ où $C \in \mathbb{R}$

- $(E): y'\cos x + 2y\sin x = 1 + \sin^2 x$ et y(0) = 03) Résolution du système de Cauchy
- On résout l'équation sur les intervalles $I_k = \left] \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[\text{ pour } k \in \mathbb{Z} \text{ où } \cos x \neq 0.$ Sur un tel intervalle I_k , $(E) \Leftrightarrow y' + 2\tan x \ y = \frac{1 + \sin^2 x}{\cos x}$ On résout d'abord sur I_k l'équation homogène $(H): y' + 2\tan x \ y = 0.$

La fonction $[a:x\mapsto 2\tan x]$ est continue sur I_k donc elle admet des primitives sur I_k .

Une primitive sur I_k de a où $a(x) = 2\frac{\sin x}{\cos x} = -2\frac{\cos'(x)}{\cos x}$ est A où $A(x) = -2\ln|\cos x| = -\ln(\cos^2 x)$ Aussi, les solutions sur I_k de l'équation homogène sont les fonctions $[x \mapsto Ce^{\ln(\cos^2 x)}]$ où $C \in \mathbb{R}$ soit finalement :

les solutions sur I_k de l'équation homogène (H) sont les fonctions $[x \mapsto C \cos^2 x]$ où $C \in \mathbb{R}$

• Il s'agit de trouver une solution particulière de l'équation (E) sur I_k .

On recherche la solution particulière y_0 sous la forme $y_0(x) = A\cos x + B\sin x$ alors $y_0'(x) = -A\sin x + B\cos x$

 $\forall x \in I_k, \quad -A\sin x \cos x + B\cos^2 x + 2A\sin x \cos x + 2B\sin^2 x = 1 + \sin^2 x$ y_0 est solution de (E) $\forall x \in I_k, \quad 2A\sin x \cos x + B + B\sin^2 x = 1 + \sin^2 x$

En identifiant, il suffit de prendre A=0 et B=1 aussi $[y_0:x\mapsto\sin x]$ est une solution particulière de (E) sur I_k . On pouvait aussi remarquer que sin était une solution évidente dès le départ...

Les solutions de l'équation (E) sur $I_k = \left] -\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ où $k \in \mathbb{Z}$ sont les fonctions $[x \mapsto C\cos^2 x + \sin x]$ où $C \in \mathbb{R}$

• Recollement des solutions

On remarque qu'il s'agit d'étudier le recollement des solutions en $x = \frac{\pi}{2} + k\pi$ pour $k \in \mathbb{Z}$ quelconque c'est à dire entre l'intervalle $I_k = \left] - \frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi \right[$ et l'intervalle $I_{k+1} = \left] \underbrace{-\frac{\pi}{2} + (k+1)\pi; \frac{\pi}{2} + (k+1)\pi}_{=\pi+h\pi} \right]$

Analyse: Si f est une solution de (E) sur \mathbb{R} , alors

- c'est aussi une solution sur chacun des intervalles I_k aussi

 $f(x) = \begin{cases} \forall k \in \mathbb{Z}, \quad \exists C_k \in \mathbb{R}, \quad \forall x \in I_k, \quad f(x) = C_k \cos^2 x + \sin x \\ \sin x + C_k \cos^2 x \quad \text{si } x \in I_k \\ \sin x + C_{k+1} \cos^2 x \quad \text{si } x \in I_{k+1} \end{cases} \quad \text{donc} \quad f'(x) = \begin{cases} \cos x - 2C_k \cos x \sin x \quad \text{si } x \in I_k \\ \cos x - 2C_{k+1} \cos x \sin x \quad \text{si } x \in I_{k+1} \end{cases}$

- f doit être continue en $x = \frac{\pi}{2} + k\pi$ or $\lim_{x \to \frac{\pi}{2} + k\pi^{-}} f(x) = (-1)^{k} = \lim_{x \to \frac{\pi}{2} + k\pi^{+}} f(x) \quad \text{puisque} \quad \cos\left(\frac{\pi}{2} + k\pi\right) = 0 \quad \text{et} \quad \sin\left(\frac{\pi}{2} + k\pi\right) = (-1)^{k}$ donc f est continue en $x = \frac{\pi}{2} + k\pi$ et : $\forall k \in \mathbb{Z}, \quad f\left(\frac{\pi}{2} + k\pi\right) = (-1)^{k}$

- f doit être dérivable $x = \frac{\pi}{2} + k\pi$ or $\lim_{x \to \frac{\pi}{2} + k\pi^-} f'(x) = 0 = \lim_{x \to \frac{\pi}{2} + k\pi^+} f'(x)$

donc, d'aprés le théorème de prolongement d'une dérivée, f est dérivable en $x = \frac{\pi}{2} + k\pi$ et : $\forall k \in \mathbb{Z}, f'\left(\frac{\pi}{2} + k\pi\right) = 0$

Ainsi, il n'y a pas de conditions à imposer pour assurer le recollement des solutions!

Si f est une solution sur \mathbb{R} , alors : $\forall k \in \mathbb{Z}, \exists C_k \in \mathbb{R}, \forall x \in \left[-\frac{\pi}{2} + k\pi; \frac{\pi}{2} + k\pi\right], \quad f(x) = \sin x + C_k \cos^2 x$

• Condition initiale

On impose la contition initiale f(0) = 0 autrement dit $f(0) = C_0 = 0$.

Par contre, il n'y a pas d'autre condition sur les constantes C_k lorsque $k \in \mathbb{Z}^*$. Finalement :

Les solutions de l'équation (E) sur $\mathbb R$ avec la condition y(0)=0 sont les fonctions f telles que : $\forall x \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right], \quad f(x)=\sin x \quad \text{et} \quad \forall k \in \mathbb Z^*, \exists C_k \in \mathbb R, \forall x \in \left[-\frac{\pi}{2}+k\pi; \frac{\pi}{2}+k\pi\right], \quad f(x)=\sin x+C_k\cos^2 x$

Cet exercice illustre le fait qu'il n'y a pas unicité de la solution sur I au problème de Cauchy $\begin{cases} \alpha(t)y' + \beta(t)y = \gamma(t) \\ y(0) = y_0 \end{cases}$ lorsque α s'annule sur I